-
Xeon cpu
The first Xeon that did not bring the Pentium brand along was based on Pentium 4's Netburst architecture and debuted with the 180 nm Foster core. It was available with 1.4 to 2.0 GHz clock speeds. The Netburst architecture continued until 2006, when Intel had expanded Xeon to a full line of UP and MP processors with the 90 nm Nocona, Irwindale, Cranford, Potomac and Paxville cores and the 65 nm Dempsey and Tulsa cores. -
Pentium M
The Pentium M 700 series, launched with the 130 nm Banias core in 2003, was targeted at mobile computers but carried the philosophy of an Intel that did not focus its processors on clock speed anymore, but on power efficiency. The processor was developed by Intel's design team in Israel, which was led by Mooly Eden and David Perlmutter, who both hold key executive roles at Intel today. -
Pentium D
The Pentium D was Intel's first dual-core processor. Still based on Netburst, the first version had the 90 nm Smithfield core (two Northwood cores) and was released as the Pentium D 800 series. It was succeeded by the 65 nm Presler (with two Cedar Mill cores) dual-core. -
Core 2 Duo
Core 2 Duo was Intel's strike back against AMD's Athlon X2 and Opteron processors, which were highly successful at the time. The Core micro-architecture was launched with the 65 nm Conroe (Core 2 Duo E-6000 series) on the desktop, Merom on the mobile side (Core 2 Duo T7000 series), and Woodcrest in the server market (Xeon 5100 series). Intel quickly followed with quad-core versions (Kentsfield Core 2 Quad series for the desktop, Clovertown Xeon 5300 series for servers). -
Core i-Series – Haswell
Intel updated its Core i-Series of processors in 2013 with the debut of the 22 nm Haswell micro-architecture, which replaced the 2011 Sandy Bridge architecture. With the introduction of Haswell, Intel also introduced the 'Y' SKU suffix for its new low-power processors designed for ultrabooks and high-end tablets (10-15 watt TDP). Haswell scaled up to 18 cores with the Haswell-EP line of Xeon processors, up to 5.69 billion transistors and clock speeds of up to 4.4 GHz.