-
310 BCE
Евклид
В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. -
300 BCE
Математики пифагорейской школы
Свойства простых чисел впервые начали изучать математики Древней Греции. -
200 BCE
Эратосфен
В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена». -
Period: 500 to 300
Математики пифагорейской школы
Свойства простых чисел впервые начали изучать математики Древней Греции. -
Катальди
Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M19, было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M127 — простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров. -
Ферма
Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов. -
Эйлер
Эйлер показал, что следующее число, 232 + 1 = 4294967297 делится на 641, и следовательно, не является простым. -
Гаусс
Лежандр и Гаусс занимались вопросами распределения чисел. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как -
Адамар
Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном. -
Мерсенн
К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M25964951, состоит из 7816230 цифр. -
Кертис Купер
Математик из США Кертис Купер получил самое большое из известных на настоящий момент простых чисел — так называемое 48-е число Мерсенна. Об открытии сообщается на сайте проекта распределенных вычислений GIMPS (Great Internet Mersenne Prime Search), в рамках которого число и было обнаружено.