-
Galileo
Galileo is lesser known for, yet still credited with, being one of the first to understand sound frequency. By scraping a chisel at different speeds, he linked the pitch of the sound produced to the spacing of the chisel's skips, a measure of frequency. In 1638, Galileo described an experimental method to measure the speed of light by arranging that two observers, each having lanterns equipped with shutters, observe each other's lanterns at some distance. -
Newton
His three laws of motion -- inertia, acceleration, and action and reaction -- remain a cornerstone of modern physics. His law of universal gravitation laid forth the theory that all particles in the universe exerted some gravitational force. In Newton's view, gravitational force was everywhere, from an apple falling from a tree to the moon being kept in orbit by its mutual attraction with Earth. While imperfect -- his law was later altered significantly by Einstein's theory of relativity -- Newt -
Michael Faraday
He worked as Davy's secretary and later on was appointed as Chemical Assistant at the Royal Institution in 1813. Faraday's trips with Davy helped him learn about many European scientists and develop sound scientific ideas.
Faraday began his research in chemistry under Humphry Davy. During this time Faraday carried out many experiments and made new discoveries in the field of chemical science. His works include identifying new chlorides of carbon, liquefying gases and the invention of the first B -
James Clark Maxwell
Maxwell published in 1859 his outstanding essay, On the Stability of Saturn's Rings, in which he concluded that Saturn rings could not be completely solid or fluid. Maxwell showed that the rings' stability could be achieved only on the condition that the rings consisted a large number of small solid particles. In this essay he also disproved mathematically the nebular hypothesis of his time which stated that the solar system was formed through the condensation of a purely gaseous nebula without -
Marie Curie
In 1898, the Curies published strong evidence supporting the existence of the new element - which they called radium - but they still had no sample of it. Pitchblende is an expensive mineral, because it contains valuable uranium, and Marie needed a lot of it. -
Bohr
In 1913, on the basis of Rutherford's theories, Bohr developed and published his model of atomic structure, known as the Bohr model, which depicts the atom as a small, positively-charged nucleus surrounded by negatively-charged electrons that travel in circular orbits around the nucleus, similar in structure to the Solar System, but with electromagnetic forces providing attraction, rather than gravity. -
Einstein
Einstein gave a series of lectures in 1915 about his new theory, which was to become known as the General Theory of Relativity, including a new equation to replace Newton's law of gravity, now known as Einstein's field equation. -
Ernest Rutherford
Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. -
Richard Feynman
The Nobel Prize in Physics 1965 was awarded jointly to Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles".