Portada

Actividad 1: Línea del tiempo (Matemáticas, arte y ciencia)

  • 5500 BCE

    Arte Geométrico. Periodo Neolítico (5500 a.C. a 2500 a.C.).

    Arte Geométrico. Periodo Neolítico (5500 a.C. a 2500 a.C.).
    Tendencia artística abstracta en la que se disponen composicionalmente elementos geométricos, trazados verticales, horizontales y diagonales, líneas uniformes y planos cromáticos. Las obras pueden ser realizadas en pintura, dibujo, grabado o escultura. Sus primeras manifestaciones se remontan a los dibujos en vasijas las cuales tenían la intención de un lenguaje esquemático y sintético, sin interés en la figuración.
  • 569 BCE

    Sistema pitagórico de afinación. (569 a.C. - 475 a.C.)

    Sistema pitagórico de afinación. (569 a.C. - 475 a.C.)
    Los pitagóricos se extendieron también a la música, estableciéndose así una teoría musical. A partir de un experimento realizado mediante una cuerda vibrante de longitud L en un aparato: el monocordio. Establecieron relaciones entre la armonía musical y los números. Llegaron a la conclusión de que, al pulsar la cuerda musical tensada, los únicos sonidos consonantes con él eran los que se producían cuando la cuerda tenía las longitudes L/2 (octava), 2L/3 (quinta) o 3L/4 (cuarta).
  • 450 BCE

    La obra de Policleto: "El Doríforo" (450 a.C. - 420 a.C.)

    La obra de Policleto: "El Doríforo" (450 a.C. - 420 a.C.)
    Policleto utilizó una falange del dedo meñique como patrón para calcular las proporciones del cuerpo humano; multiplica la longitud de la falange distal por √2 para obtener la distancia de las 2das falanges y vuelve a multiplicar la longitud por √2 para obtener la longitud de las terceras falanges. Luego, toma la longitud del dedo y lo multiplica por √2 para obtener la longitud de la palma desde la base del dedo hasta el ulna. Y así sucesivamente hasta que formó varias partes del cuerpo.
  • 1415

    Perspectiva lineal en Brunelleschi.

    Perspectiva lineal en Brunelleschi.
    El arquitecto italiano Filippo Brunelleschi y su amigo Leon Battista Alberti demostraron el método geométrico de aplicar la perspectiva en Florencia, utilizando triángulos similares a los formulados por Euclides, para encontrar la altura aparente de los objetos distantes. Las pinturas en perspectiva de Brunelleschi están perdidas, pero la pintura de Masaccio de la Santísima Trinidad muestra sus principios en acción.
  • 1508

    El número áureo de la Capilla Sixtina

    El número áureo de la Capilla Sixtina
    Miguel Ángel utilizó la Proporción Áurea cuando pintó La Creación de Adán en el techo de la Capilla Sixtina. También conocida como la Proporción Divina o Número Áureo, es una proporción geométrica que de forma satisfactoria es la más agradable estéticamente para la percepción visual. Tiene un valor de aprox. 1,61803; también se ha considerado como una “constante” natural, presente en estructuras biológicas, como la curvatura de los colmillos de los elefantes o la forma espiral de las conchas.
  • "La aventuras de Alicia en el país de las maravillas" por Lewis Carroll

    "La aventuras de Alicia en el país de las maravillas" por Lewis Carroll
    “Las aventuras de Alicia en el país de las maravillas” (1865) de Lewis Carroll, pseudónimo del matemático británico Charles Lutwidge Dodgson , contiene una gran cantidad de juegos de lógica y de pasatiempos matemáticos. Ha sido editado en numerosas ocasiones y traducido a una gran cantidad de idiomas, incluido el esperanto.
  • Geometría hiperbólica en la obra de Escher

    Geometría hiperbólica en la obra de Escher
    Maurits C. Escher se preguntó si era posible construir un mosaico que diera una idea de infinito, a través de losetas que manteniendo la forma, redujeran regularmente su tamaño. La respuesta la encontró en la geometría hiperbólica, en un artículo de Coxeter: “Crystal Symmetry and Its Generalizations” que muestra una teselación del modelo del plano hiperbólico creado por Poincaré. Inspirado en esto realizó la primera versión de Círculo Límite, que fue mejorando a medida que profundizó en el tema.
  • Drawing Machine 1

    Drawing Machine 1
    Algunas de las primeras obras de arte de computadora fueron creadas por Desmond Paul Henry “Drawing Machine 1”, una máquina análoga basada en una computadora bombsight que era capaz de crear líneas complejas, abstractas, asimétricas, curvilíneas, pero repetitivas dibujos. Más recientemente, Hamid Naderi Yeganeh ha creado formas que son objetos del mundo real, como peces y pájaros, utilizando fórmulas que se van variando sucesivamente para dibujar familias de curvas o líneas en ángulo.
  • Arte Fractal

    Arte Fractal
    El arte fractal es una forma de arte algorítmico que consiste en producir imágenes, animaciones e incluso música de objetos fractales y que representa los resultados del cálculo como imágenes fijas, animaciones y medios. Es un género de arte informático y arte digital que forman parte del arte de los nuevos medios. La belleza matemática de los fractales se encuentra en la intersección del arte generativo y el arte de la computadora. Se combinan para producir un tipo de arte abstracto.
  • "El rescoldo" por Joaquín Leguina

    "El rescoldo" por Joaquín Leguina
    El matemático, novelista y político Joaquín Leguina en su novela ”El rescoldo” (2004) entremezcla el teorema de Fermat y la conjetura de Golbach con la Guerra Civil española y un triángulo amoroso.
  • Obra "El árbol alto y el ojo" de Anish Kapoor

    Obra "El árbol alto y el ojo" de Anish Kapoor
    La obra de la torre de bolas esféricas, llamada "El árbol alto y el ojo" del escultor indio-británico Anish Kapoor, crea reflejos que son de naturaleza fractal, mientras que sus espejos hiperbólicos distorsionan nuestro medio ambiente para crear una nueva perspectiva extraña en el mundo.
    Los espejos curvos de Kapoor proporcionan un lente para ver el universo como lo que realmente es: curvo, doblado, donde la luz se deforma en su camino a través del espacio y nuestra intuición se vira al revés.