-
First Generation
http://members.iinet.net.au/~dgreen/The first generation of computers is said by some to have started in 1946 with ENIAC, the first 'computer' to use electronic valves (ie. vacuum tubes). Others would say it started in May 1949 with the introduction of EDSAC, the first stored program computer. Whichever, the distinguishing feature of the first generation computers was the use of electronic valves. -
second generations of computers
Second Generation Computers (1956-1963) The invention of Transistors marked the start of the second generation. These transistors took place of the vacuum tubes used in the first generation computers. First large scale machines were made using these technologies to meet the requirements of atomic energy laboratories. One of the other benefits to the programming group was that the second generation replaced Machine language with the assembly language. Even though complex in itself Assemly langu -
third generation of computers
Third Generation Computers
(1964-1971) The 3rd Generation Computers were generally much smaller in size than the 2nd and 1st generation computers. This is because these newer computers made us of integrated circuits and semiconductors (a type of material that had the properties of an insulator and a conductor). 3rd generation computers also contained operating systems, which acted as overseers to the performance of a computer and which allowed computers to run different programs at once. An -
5th generations of computers
In this period, computer technology achieved more superiority and parallel processing, which was until limited to vector processing and pipelining, where hundreds of processors could all work on various parts of a single program. There were introduction of systems like the Sequent Balance 8000, which connected up to twenty processors to one shared memory module. -
4th generation of computers
In this generation, there were developments of large-scale integration or LSI (1000 devices per chip) and very large-scale integration or VLSI (10000 devices per chip). These developments enabled the entire processor to fit into a single chip and in fact, for simple systems, the entire computer with processor; main memory and I/O controllers could fit on a single chip.