Diseño e implementación de un software para la fenotipacion y etiquetado de historias clínicas electrónicas de mujeres gestantes en las entidades de salud públicas en Medellín
By dmp27
-
Lina Patricia David Gonzalez
-
Daniel Muñoz Paredes
-
Esneider Cano Londoño
-
Laura Velasquez Areiza
-
Mateo Gomez Henao
-
Handbook of Medical Imaging: Processing and Analysis Management
Zheng, B. (2000). Selección de base de datos y extracción de características para redes neuronales. IMÁGENES MÉDICAS , 311.
Libro de Ingeniería Biomédica -
Aplicación de redes neuronales al filtrado de documentos
Gómez, S. A., & Lanzarini, L. C. (2001). Aplicación de redes neuronales al filtrado de documentos. In III Workshop de Investigadores en Ciencias de la Computación. -
Diseño de una Clase de Sistemas Borrosos Recurrentes Mediante Algoritmos Genéticos Para la Tarea de Clasificación de Patrones
Estévez, J., Alayón, S., Moreno, L., Aguilar, R., & Sigut, J. (2002). Diseño de una Clase de Sistemas Borrosos Recurrentes Mediante Algoritmos Genéticos Para la Tarea de Clasificación de Patrones. XXIII Jornadas de Automática. -
Detection of activated platelets in normal pregnancy and preeclampsia
Herbolsheimer, J. E. (2003). Detection of activated platelets in normal pregnancy and preeclampsia. Grand Valley State University. -
Predicting clinical outcomes for newborns using two artificial intelligence approaches
Frize, M., Ibrahim, D., Seker, H., Walker, R., Odetayo, M. O., Petrovic, D., & Naguib, R. N. G. (2004, September). Predicting clinical outcomes for newborns using two artificial intelligence approaches. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2, pp. 3202-3205). IEEE. -
Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning
Kenny, LC, Dunn, WB, Ellis, DI, Myers, J., Baker, PN y Kell, DB (2005). Nuevos biomarcadores para la preeclampsia detectados mediante metabolómica y aprendizaje automático. Metabolómica , 1 (3), 227-234. -
Application of neural networks for prediction of fetal outcome
Jeżewski, M., Henzel, N., Wrobel, J., & Labaj, P. (2006). Application of neural networks for prediction of fetal outcome. J. Med. Inform. Technol, 10, 127-132. -
The prediction of fetal outcome by applying neural network for evaluation of CTG records
Jezewski, M., Wrobel, J., Horoba, K., Gacek, A., Henzel, N., & Leski, J. (2007). The prediction of fetal outcome by applying neural network for evaluation of CTG records. In Computer Recognition Systems 2 (pp. 532-541). Springer, Berlin, Heidelberg. -
Detection and Identification of Novel Metabolomic Biomarkers in Preeclampsia
Kenny, L. C., Broadhurst, D., Brown, M., Dunn, W. B., Redman, C. W., Kell, D. B., & Baker, P. N. (2008). Detection and identification of novel metabolomic biomarkers in preeclampsia. Reproductive Sciences, 15(6), 591-597. -
Neural networks to estimate the risk for preeclampsia occurrenceNeural networks to estimate the risk for preeclampsia occurrence
Neocleous, C. K., Anastasopoulos, P., Nikolaides, K. H., Schizas, C. N., & Neokleous, K. C. (2009, June). Neural networks to estimate the risk for preeclampsia occurrence. In 2009 International Joint Conference on Neural Networks (pp. 2221-2225). IEEE. -
Robust Early Pregnancy Prediction of Later Preeclampsia Using Metabolomic Biomarkers
Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., ... & Baker, P. N. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 56(4), 741-749. -
Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes
Tejera, E., Jose areias, M., Rodrigues, A., Ramoa, A., Manuel nieto-villar, J., & Rebelo, I. (2011). Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. The Journal of Maternal-Fetal & Neonatal Medicine, 24(9), 1147-1151 -
Development of e-health network for in-home pregnancy surveillance based on artificial intelligence
Kazantsev, A., Ponomareva, J., Kazantsev, P., Digilov, R., & Huang, P. (2012, January). Development of e-health network for in-home pregnancy surveillance based on artificial intelligence. In Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (pp. 82-84). IEEE. -
Prediction of Preterm Deliveries from EHG Signals Using Machine Learning
Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of preterm deliveries from EHG signals using machine learning. PloS one, 8(10), e77154. -
Artificial Neural Networks Application to Predict Type of Pregnancy in Women Equal or Greater Than 35 Years of Age
Nouhjah, S. y Kalhori, SRN (2014). Aplicación de redes neuronales artificiales para predecir el tipo de embarazo en mujeres mayores de 35 años. Ciudad , 83 , 41-5 -
A comparative study of classification algorithms for predicting gestational risks in pregnant women
Lakshmi, B. N., Indumathi, T. S., & Ravi, N. (2015, November). A comparative study of classification algorithms for predicting gestational risks in pregnant women. In 2015 International Conference on Computers, Communications, and Systems (ICCCS) (pp. 42-46). IEEE. -
Recurrent neural networks in medical data analysis and classifications
Al-Askar, H., Radi, N., & MacDermott, Á. (2016). Recurrent neural networks in medical data analysis and classifications. In Applied Computing in Medicine and Health (pp. 147-165). Morgan Kaufmann. -
Expert system for predicting the early pregnancy with disorders using artificial neural network
Maylawati, D. S. A., Ramdhani, M. A., Zulfikar, W. B., Taufik, I., & Darmalaksana, W. (2017, August). Expert system for predicting the early pregnancy with disorders using artificial neural network. In 2017 5th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-6). IEEE. -
Exploring physiological indicators of pregnancy outcomes using machine learning and longitudinal patient data
Bixhain, A. (2018). Master thesis: Exploring physiological indicators of pregnancy outcomes using machine learning and longitudinal patient data. -
Use of Machine Learning Algorithms for Prediction of Fetal Risk using Cardiotocographic Data
Hoodbhoy, Z., Noman, M., Shafique, A., Nasim, A., Chowdhury, D. y Hasan, B. (2019). Uso de algoritmos de aprendizaje automático para la predicción del riesgo fetal a partir de datos cardiotocográficos. Revista internacional de investigación médica básica y aplicada , 9 (4), 226. -
Early prediction of preeclampsia via machine learning
Marić, I., Tsur, A., Aghaeepour, N., Montanari, A., Stevenson, D. K., Shaw, G. M., & Winn, V. D. (2020). Early prediction of preeclampsia via machine learning. American Journal of Obstetrics & Gynecology MFM, 2(2), 100100. -
Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes
Davidson, L. y Boland, MR (2021). Hacia un fenotipo profundo del embarazo: una revisión sistemática sobre inteligencia artificial y métodos de aprendizaje automático para mejorar los resultados del embarazo. Informes sobre bioinformática , 22 (5), bbaa369. -
A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes
Schmidt, L. J., Rieger, O., Neznansky, M., Hackelöer, M., Dröge, L. A., Henrich, W., ... & Verlohren, S. (2022). A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes. American Journal of Obstetrics and Gynecology.