-
John von Neumann
El concepto de programa almacenado permitió la lectura de un programa dentro de la memoria de la computadora, y después la ejecución de las instrucciones del mismo sin tener que volverlas a escribir. La primera computadora en usar el citado concepto fue la llamada EDVAC (Electronic Discrete-Variable Automatic Computer, es decir 'computadora automática electrónica de variable discreta'), desarrollada por Von Neumann, Eckert y Mauchly. Los programas almacenados dieron a las computadoras -
John Forbes Nash (1928- )
John Forbes Nash (1928- ) es el nombre más destacado relacionado con la teoría de juegos. A los 21 años escribió una tesina de menos de treinta páginas en la que expuso por primera vez su solución para juegos estratégicos no cooperativos, lo que desde entonces se llamó "el equilibrio de Nash", que tuvo un inmediato reconocimiento entre todos los especialistas. -
LA Teoria
La teoría de juegos como tal fue creada por el matemático húngaro John Von Neumann (1903-1957) y por Oskar Morgenstern (1902-1976) en 1944 gracias a la publicación de su libro “The Theory of Games Behavior” -
El dilema Del Prisionero
Dos hombres acusados de violar conjuntamente la ley fueron encerrados por la policía en habitaciones separadas y no pueden hablar entre ellos. Se dice a cada uno por separado que: 1.- Si uno de ellos se confiesa culpable, pero el otro no, el primero recibirá una recompensa y el segundo será castigado.
2.- Si ambos confiesan se castigará a los dos.
3.- Si ninguno confiesa, ambos quedarán libres.
Link -
TIPOS DE JUEGOS
La teoría clasifica los juegos en muchas categorías que determinan qué métodos particulares se pueden aplicar para resolverlos (y, de hecho, también cómo se define "resolución" en una categoría particular). -
Juegos simétricos y asimétricos
Un juego simétrico es un juego en el que las recompensas por jugar una estrategia en particular dependen sólo de las estrategias que empleen los otros jugadores y no de quién las juegue. Si las identidades de los jugadores pueden cambiarse sin que cambien las recompensas de las estrategias, entonces el juego es simétrico. Muchos de los juegos 2×2 más estudiados son simétricos. EJ:dilema del prisionero -
Juegos de suma cero y de suma no cero
En los juegos de suma cero el beneficio total para todos los jugadores del juego, en cada combinación de estrategias, siempre suma cero (en otras palabras, un jugador se beneficia solamente a expensas de otros). EJ: juego del oso -
Juegos cooperativos
Juego donde grupos de jugadores ("coaliciones) pueden tomar comportamientos cooperativos, pues el juego es una competición entre coaliciones de jugadores más que entre jugadores individuales. Es como un juego de coordinación, donde los jugadores escogen las estrategias por un proceso de toma de decisiones consensuada. -
Juegos Simultáneos y secuenciales
los jugadores mueven simultáneamente o en los que éstos desconocen los movimientos anteriores de otros jugadores. Los juegos secuenciales (o dinámicos) son juegos en los que los jugadores posteriores tienen algún conocimiento de las acciones previas. Este conocimiento no necesariamente tiene que ser perfecto; sólo debe consistir en algo de información -
Juegos de información perfecta
n subconjunto importante de los juegos secuenciales es el conjunto de los juegos de información perfecta. Un juego es de información perfecta si todos los jugadores conocen los movimientos que han efectuado previamente todos los otros jugadores; así que sólo los juegos secuenciales pueden ser juegos de información perfecta, pues en los juegos simultáneos no todos los jugadores (a menudo ninguno) conocen las acciones del resto ej:ajedrez y el Cien pies -
En 1965, Reinhard Selten
introdujo su concepto de solución de los equilibrios perfectos del subjuego, que más adelante refinó el equilibrio de Nash. En 1967 John Harsanyi desarrolló los conceptos de la información completa y de los juegos bayesianos. Él, junto con John Nash y Reinhard Selten, ganaron el Premio Nobel de Economía en 1994. -
Juegos de longitud infinita (SuperJuegos)
or razones obvias, los juegos estudiados por los economistas y los juegos del mundo real finalizan generalmente tras un número finito de movimientos. Los juegos matemáticos puros no tienen estas restricciones y la teoría de conjuntos estudia juegos de infinitos movimientos, donde el ganador no se conoce hasta que todos los movimientos se conozcan. ej:Axioma de eleccion -
En la década de 1970
la teoría de juegos se aplicó extensamente a la biología, en gran parte como resultado del trabajo de John Maynard Smith y su concepto estrategia estable evolutiva. Además, los conceptos del equilibrio correlacionado, la perfección del temblor de la mano, y del conocimiento común fueron introducidos y analizados.