Historia de las Matemáticas

  • 3000 BCE

    Egipto

    Egipto
    Junto a Babilonia, fue uno de los lugares donde existían matemáticos serios (dicho de este manera porque las matemáticas han sido usadas desde que el ser humano tiene capacidad de pensar) haciendo aritmética y geometría (esto sin demostraciones), además, estos tenían su forma de hacer los números, que son los números hieráticos.
  • 3000 BCE

    Sumeria, Mesopotamia

    Una de las primeras evidencias del descubrimiento de las matemáticas fue en este lugar, data del año 3000 a. C. Los numerales se escribían con un palito llamado "estilo" sobre el barro fresco, y quedaban con forma de cuñas. el sistema sumerio era sexagesimal por eso dividían las horas en 60 minutos, sistema que usamos hasta la actualidad.
  • 1650 BCE

    Cálculo de áreas

    Cálculo de áreas
    Además, los egipcios llegaron a calcular áreas de varias figuras, hasta de cubos y primas, aunque no pudieron con los círculos, aunque estos llegaron a aproximarse al número π.
  • 1200 BCE

    China

    China
    Estos llegaron a calcular las horas solares, además de que tenían un libro llamado Chou Peique, en donde habían problemas resueltos también encontrados en Egipto y Babilonia. Por otro lado, podían resolver ecuaciones lineares, problemas hasta con 5 incógnitas y polinomios hasta de cuarto grado, problemas relacionados a triángulos rectángulos y los números negativos (aunque no tenían una idea completa de este). Además, tenían un tablero de cálculo que tenía una función parecida al Abaco.
  • 700 BCE

    Números Romanos

    El sistema de los números romanos surgió del utilizado por los etruscos, una civilización italiana que vivió durante los siglos VII y IV a.C. Los romanos se basaban en el método de adición es decir I y I eran II, V y II eran VII y II y II eran IIII.
  • 630 BCE

    Tales de Mileto

    Tales de Mileto
    Nació en el 630 a.C y murió en el 545 a.C fue uno de los griegos revolucionarios que además de ser influyente en la filosofía de la physis, también se destacó en crear el teorema que lleva su nombre y otros teoremas más, además de ser llamado el primero de los 7 sabios de Grecia.
  • Period: 630 BCE to 190 BCE

    Griegos

    Las personas que revolucionaron las matemáticas en ese tiempo fueron: Tales de Mileto, Pitágoras de Samos, Demócrito de Abdera (que podía sacarle el volumen a una pirámide en el siglo V a.C), Euclides de Alejandría que hizo varias teorías de óptica, geometría, áreas y volúmenes y Apolonio de Perga que fue un investigador de las cónicas junto a Teodosio de Bitinia. A pesar de eso, los griegos eran limitados por el hecho de que solo usaban números naturales.
  • 580 BCE

    Pitágoras

    Pitágoras
    Nació en el 580 a.C y falleció en el 495 a.C, es uno de los matemáticos más conocidos hasta el día de hoy por su teorema que lleva su nombre, además de crear una filosofía de la physis basada en números, casi considerada como una religión o secta.
  • 460 BCE

    Demócrito

    Demócrito fue uno de los pioneros en matemáticas y geometría. De hecho, escribió tratados sobre los números, las figuras, las tangentes, los números irracionales, entre otros. Sin embargo, en nuestros días no existen copias de estos tratados y se sabe de ellos solo gracias a fuentes secundarias. De igual modo, se sabe que Demócrito fue el primero en observar que el volumen de un cono es igual al tercio del volumen de un cilindro que tenga la misma base y la misma altura del cono en cuestión.
  • 330 BCE

    Euclides

    Euclides
    Nació en el 330 a.C y murió en el 275 a.C, también es un matemático griego bastante reconocido no solo por ser un compilador de datos matemáticos, sino también por la forma en cómo estos datos estaban organizados edificando de manera armoniosa la geometría de la época y también se le atribuyen teorías de optica, geometría, áreas y volúmenes.
  • Period: 1 CE to 100

    Números negativos

    Primeras referencias a las raíces cuadradas de números negativos de Herón de Alejandría
  • Period: 99 to 1199

    Hindues y Árabes

    Los hindúes para esos tiempos ya habían creado sistemas decimales, asímismo, reglas de aritméticas para el cálculo, el número cero, los números negativos y los números irraccionales, incluso tenían ideas sobre las ecuaciones lineales y cuadráticas y raíces.
    Los árabes por su parte, nos dieron la composición de números (unidades , decenas y centenas) tal y como la conocemos el día de hoy.
  • 500

    Número Cero

    El primer uso del numero cero tal como lo conocemos fue hasta el año 500 de nuestra era, y se lo debemos al matemático de la India Aryabhata: el numero no solo indica "ausencia", sino que multiplica por 10 la cifra que tiene a la izquierda.
  • 1175

    Leonardo de Pisa (Fibonacci)

    Leonardo de Pisa (Fibonacci)
    Nació en 1175 y falleció en 1240, fue un matemático italiano que difundió en Occidente los conocimientos científicos del mundo árabe, los cuales recopiló en el Liber Abaci (Libro del ábaco). Popularizó el uso de las cifras árabes y expuso los principios de la trigonometría en su obra Practica Geometriae (Práctica de la geometría). Es reconocido también por la sucesión que llevan su nombre y por el número aureo.
  • 1261

    Triángulo de Yang Hui

    Triángulo de Yang Hui
    Es un triángulo que consistía en la suma de progresiones y combinatoria, actualmente conocido como el triángulo de pascal aproximadamente en el 1261.
  • Period: 1501 to

    Renacimiento 2

    Además:
    - Giuseppe Lagrancia (1736-1813) hizo descubrimientos sobre la teoría de números
    - Gaspar Monge (1746-1818) descubre la geometría descriptiva
    Además, en el renacimiento podemos ver el descubrimiento de los números complejos y las notacones numéricas más parecidas a las actuales
    Por otro lado, surgen las teorías de cinemática de Newton y sus análisis de velocidades y las series infinitas de LaGrange
  • Period: 1501 to

    Renacimiento

    Periodo en donde ya los matemáticos no trabajaban de manera «separada», es decir, cada uno en su país, sino que más bien era algo de manera unida que empieza desde Gerolamo Cardano y termina en Euler aproximadamente.
    Entre las novedades que hubo en estas fechas están:
    - Cardano (1501-1576) descubre las formulas para ecuaciones de tercer y cuarto grado.
    - Jakob Bernoulli (1654-1705) inventa el cálculo de las variaciones
    (Continuación en Renacimiento 2)
  • 1557

    Robert Recorde

    Introduce los símbolos matemáticos como el de suma, resta e igualdad
  • René Descartes

    Nos introduce a la geometría analítica
  • Blaise Pascal

    Sus contribuciones a la matemática y a la historia natural incluyen el diseño y construcción de calculadoras mecánicas, aportes a la teoría de la probabilidad, investigaciones sobre los fluidos y la aclaración de conceptos tales como la presión y el vacío.
  • Geometría Analítica

    El nacimiento de la geometría analítica se atribuye a Descartes, por el apéndice La Géométrie incluido en su Discurso del método, publicado en 1637, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Sin embargo las ideas de Descartes eran algo oscuras y difíciles de entender y se atribuye su ampliación, desarrollo y divulgación en el mundo matemático a Frans van Schooten y colaboradores.
  • Cálculo

    En el último tercio del siglo XVII, Newton en 1664 - 1666 y Leibniz en 1675 inventaron el Cálculo de forma independiente: Unificaron y resumieron en dos conceptos generales, el de integral y derivada, la gran variedad de técnicas diversas y de problemas que se abordaban con métodos particulares. Desarrollaron un simbolismo y unas reglas formales de "cálculo" que podían aplicarse a funciones algebraicas y trascendentes, independientes de cualquier significado geométrico, entre otras cosas más.
  • Isaac Newton

    Nos abre paso al cálculo infinitesimal
  • Leonhard Euler

    Leonhard Euler
    Nació en 1707 y falleció en 1783, es un matemático bastante reconocido en el mundo de cálculo el día de hoy, el cual hizo bastantes aportes al álgebra, a la mecánica y a la teoría del cálculo. También se le reconoce por su número «e» que es aproximadamente 2.7182... planteado a través de un límite, por otro lado contribuyó sustancialmente a la moderna notación matemática de conceptos como función, suma de los divisores de un número y expresión del número imaginario «i», entre muchas otras cosas.
  • Carl Friedrich Gauss

    Carl Friedrich Gauss
    Gauss (1777-1855) fue uno de los grandes matemáticos de todos los tiempos aportando en temas como: Teoría de números, geometría, teoría de la probabilidad, geodesía, astronomía planetaria, teoría de funciones y teoría del potencial (incluido electromagnetismo). Su obra más reconocida actualmente fue creada en 1801, la cual tenía por nombre «Las Disquisiciones aritméticas», el cual fue su primer libro sistemática sobre teoría de números el cual ha sido muy útil en diferentes campos matemáticos.
  • Period: to

    Siglo XIX

    En este punto, las matemáticas ya se consideran como una ciencia importante, usando estas reglas, simbologías y otras cosas para hacer de las matemáticas una ciencia exacta.
    Acontencimiento a destacar:
    - Se descubre los conceptos de límites y cálculo de aproximaciones gracias a Cauchy (1789-1857)
    - Fourier (1768-1830) consiguió hacer sumas infinitas con funciones trigonométricas (series de Fourier)
    - Riemann (1826-1860) descubre las paralelas multiples
    Entre otras cosas más
  • Period: to

    Tiempos contemporáneos

    No hay mucho que decir de esta fecha ya que la estamos viviendo viendo como los matemáticos intentan resolver cuestionamientos de años y creando nuevas cosas para la evolución de la tecnología y otras ramas.
    Entre las cosas destacadas están:
    - En un congreso internacional de matemáticos, David Hilbert planteó 23 problemas matemáticos sin resolver de los cuales solo 10 se han resuelto totalmente
    - En 1976 Haken y Appel demostraron (con computadoras) el teorema de los 4 colores
    Entre otras cosas
  • Daniel Hilbert

    Propuso de forma explícita un proyecto de investigación (de carácter matemático) que termino siendo reconocido como programa de Hilbert; este planteo que las matemáticas estuvieran formuladas sobre unas bases sólidas y completamente lógicas.
  • Michael Artin

    Es un matemático estadounidense que publicó su «libro Algebraic Spaces. New Haven: Yale University Press». El cual aporta a las algebras de esta generación y ayuda a su comprensión.
  • Teorema de los 4 colores

    Este teorema fue demostrado utilizando una computadora de gran capacidad de cálculo en la Universidad de Illinois, Estados Unidos.
  • Harald Helfgott

    Prueba la conjetura débil de Golbach