-
2200 BCE
Uso de herramintas
Ya se utilizaban herramientas para los trazos de dibujos al mismo tiempo los arquitectos egipcios para los planos de la piramides. (Usaban Tablillas de arcilla o madera) -
1650 BCE
Papiro de Ahmes
Del año 1650 a.C. data el papiro de Ahmes. Este escriba egipcio, redactó, en un papiro de de 33 por 548 cm., una exposición de contenido geométrico dividida en cinco partes que abarcan: la aritmética, la estereotomía, la geometría y el cálculo de pirámides. En este papiro se llega a dar valor aproximado al número π. -
600 BCE
Tales de Mileto, filósofo griego
Se dice de él que introdujo la geometría en Grecia, ciencia que aprendió en Egipto. Sus conocimientos, le sirvieron para descubrir importantes propiedades geométricas. Tales no dejó escritos; el conocimiento que se tiene de él, procede de lo que se cuenta en la metafísica de Aristóteles. -
300 BCE
Elementos Matematicos Griego
Es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como: geometría plana, magnitudes inconmensurables y geometría del espacio. Probablemente estudio en Atenas con discípulos de Platón. Enseñó geometría en Alejandría, y allí fundó una escuela de matemáticas -
287 BCE
Arquímedes, inventor griego
Inventó formas de medir el área de figuras curvas, así como la superficie y el volumen de sólidos limitados por superficies curvas. Demostró que el volumen de una esfera es dos tercios del volumen del cilindro que la circunscribe. -
1400
Hombre de Vitruvio
Es durante el Renacimiento, cuando las representaciones técnicas, adquieren una verdadera madurez, son el caso de los trabajos del arquitecto Brunelleschi, los dibujos de Leonardo de Vinci, y tantos otros. Pero no es, hasta bien entrado el siglo XVIII, cuando se produce un significativo avance en las representaciones técnicas. -
Jean Victor Poncelet (1788-1867)
A él se debe a introducción en la geometría del concepto de infinito, que ya había sido incluido en matemáticas. En la geometría de Poncellet, dos rectas, o se cortan o se cruzan, pero no pueden ser paralelas, ya que se cortarían en el infinito. El desarrollo de esta nueva geometría, que él denominó proyectiva, lo plasmó en su obra "Traité des propietés projectivas des figures" en 1822.